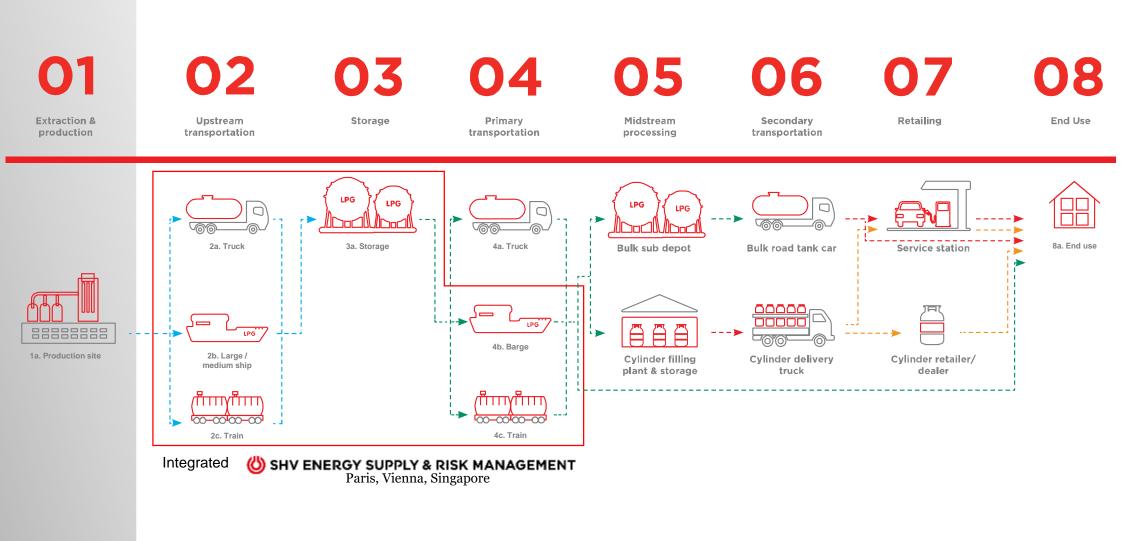
Decarbonising trucks, trains, boats and planes REA's Renewable Transport Fuels Group

Other RFNBO gases, are they a good idea, can their costs come down and which are most promising? Dr Keith Simons

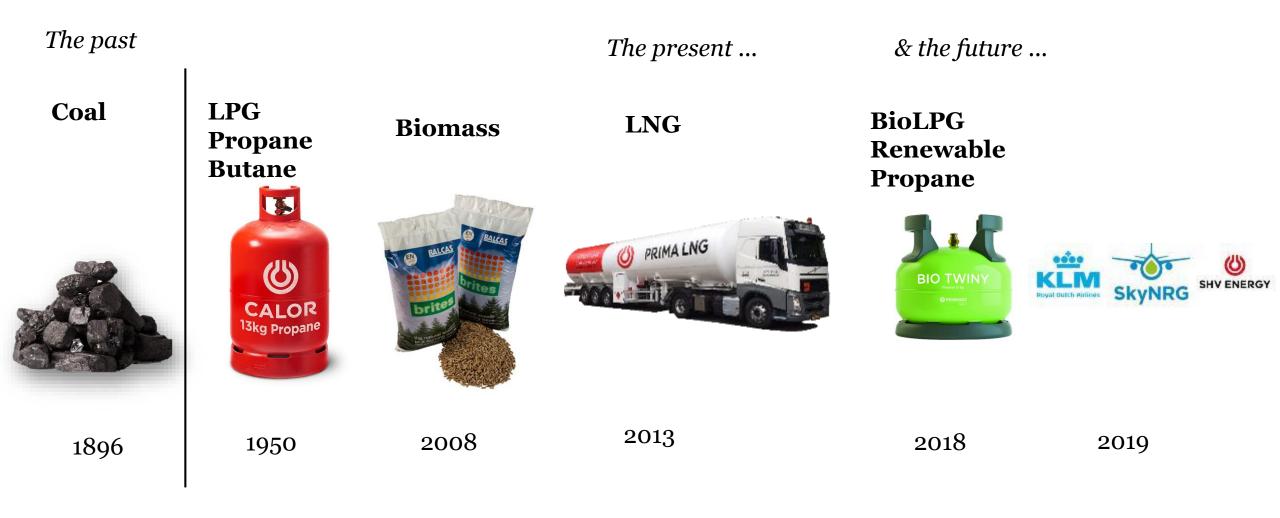
SHV Holdings trading group Privately owned, international in reach and local in focus

SHV Energy is part of SHV Holdings, a family owned Dutch trading company, regarded as one of the world's largest private trading groups.

SHV Holdings is a highly diversified company



SHV Holdings employs around 60,000 people in 60 countries.



Our value chain / logistics

Our product portfolio innovation

Our Vision :

Advancing Energy Together

Our commitment

Our bold ambition :

5 million tonnes of CO2 reduction by 2025

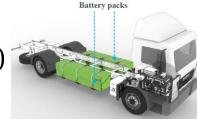
100% of our energy products to be from renewable sources in 2040

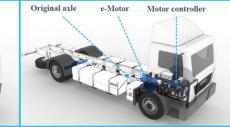
UK Rigid Truck Types

The World's 1st LPG Range-Extended Electric 16te Cylinder truck

Military grade Li-Ion batteries

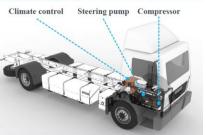
2 litre **LPG** steady state engine (could also run on CNG)


Plug-in charging (1.5 h @ 44kW)


40 mile EV-only range **with GPS ring-fencing**

350 mile RE range

Regenerative braking


Cleaner Quieter (50%) Lower carbon

Other RFNBO gases..... (Renewable Fuels of Non Biological Origin)

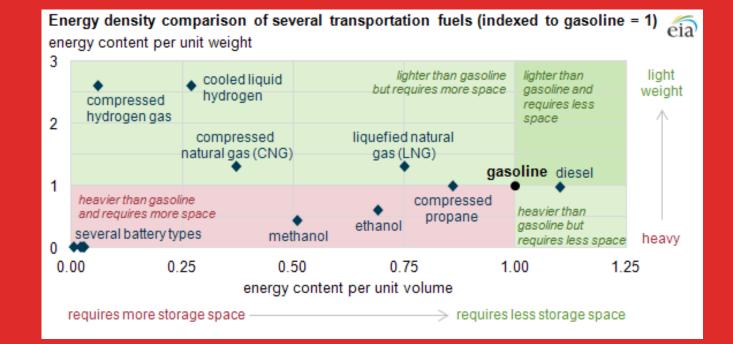
Definition of RFNBOs

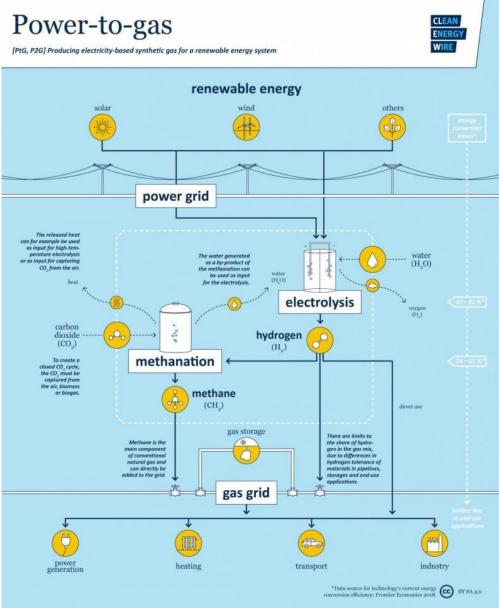
- 3.33 RFNBOs are renewable liquid or gaseous transport fuels for which none of the energy content of the fuel comes from biological sources. These fuels are considered renewable where the energy content of the fuel comes from renewable energy sources but excluding bioenergy sources²³. This means that RFNBOs could be made using electricity and/or heat and/or cold from wind, solar, aerothermal, geothermal or water (including hydrothermal sources, waves and tides). RFNBOs cannot be derived from bioenergy sources and therefore would not be able to be derived from biomass, landfill gas, sewage treatment plant gas or biogases. As the available energy source of RFNBOs comes from the process energy, the input feedstocks must contain no usable energy. In practice this means that the feedstock must be either water and/or carbon dioxide (CO₂).
- 3.34 The simplest RFNBO is renewable hydrogen (for example from wind or solar power electrolysis) that is directly used in transport applications: either in an internal combustion engine or a fuel cell electric vehicle. A range of other renewable transport fuels can also be generated by reacting this RFNBO hydrogen precursor with CO₂, to produce RFNBO products such as methane, methanol, ethanol, di-methyl ether, petrol, kerosene and diesel.
- 3.35 If a RFNBO is produced from CO₂, the carbon dioxide can come from waste fossil sources (for example, waste flue gases from coal and natural gas power generation or similar industrial combustion processes), from biological sources (e.g. alcohol fermentation or anaerobic digestion) or from atmospheric or naturally-occurring/geothermal sources.

RTFO Guidance Part One Process Guidance 2019: 01/01/19 to 31/12/19

This definition would also allow for ammonia (NH3)

Other RFNBO Gases (Renewable Fuels of Non Biological Origin)


Methane Dimethyl Ether (via Methanol) LPG? (NH3)


Are they a good idea?

If you don't have a direct need for the energy

If you don't need to store and then transport — Yes!

Methanation

Makes a drop-in fuel Can benefit from surplus electricity Can store energy over a long period of time Transports well Doesn't require biomass Can re-use a lot of (downstream) existing infrastructure Many demonstration projects

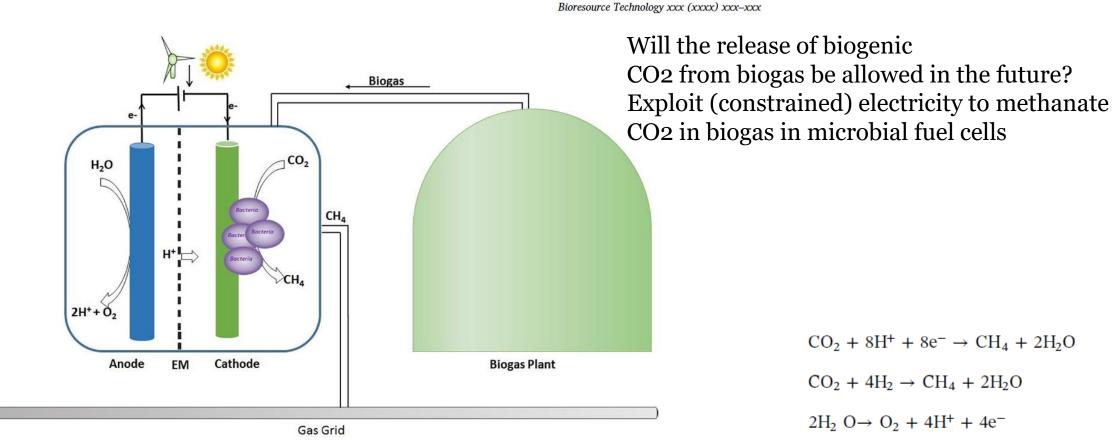
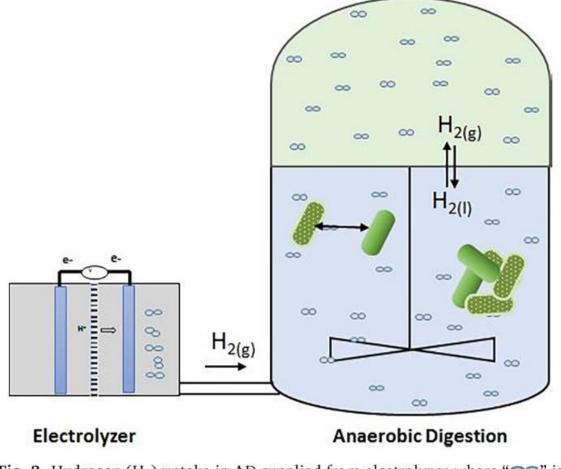
However

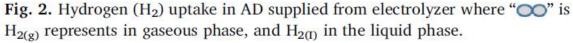
- after electrolysis only about 67-81% of energy remains
- After methanation only about 54-65% of energy remains
- Makes expensive water (from water)
- Requires a point source of (clean) CO2
- Not suited to intermittent production

$$CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O_{(g)} \Delta H_{298K} = -164 \frac{kJ}{mol}$$

Power to Gas - Bioelectrochemical biogas upgrading

N. Aryal et al.


Fig. 3. Bioelectrochemical CH_4 enrichment phenomena discussed in this review, where EM represent Exchange membrane, electrochemical oxidation reaction takes place at the anode to generates O_2 and H^+ and electrochemically active microorganisms utilize the cathode as electron donor and CO_2 from biogas to produce CH_4 .

Biogas enrichment in anaerobic digestion

N. Aryal et al.

Hydrogen from a conventional electrolyser injected into digester and methanates CO2 in biogas

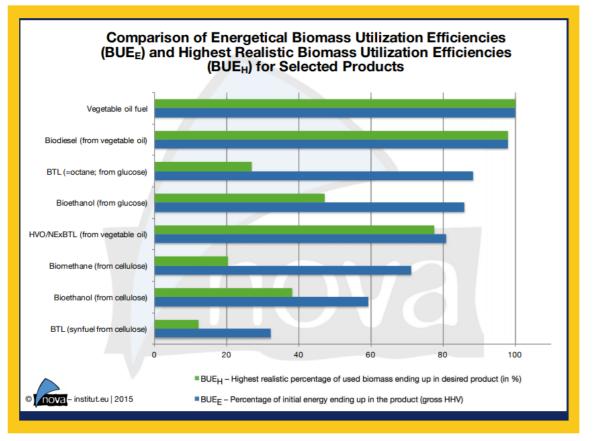
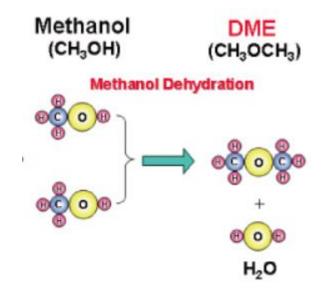


Figure 4: Comparison of Energetic BUE_E with Highest Realistic BUE_H for selected compounds

Dimethyl Ether (from Methanol)


FIGURE 1 (Top) CRI's George Clah Renewable Methanol plant in Svartsengi, loeland. (Bottom) Block flow diagram showing the different origins of syngas for the conventional process compared to the CRI process starting from CO₂ pointing out the energy intensive reforming process in the former.

Process Advantages of Direct CO₂ to Methanol Synthesis

Dana S. Marlin*, Emeric Sarron and Ómar Sigurbjörnsson

Carbon Recycling International, Kópavogur, Iceland

Companies such as CRI in Iceland have been pioneering Methanol synthesis from electrolytic hydrogen and CO2 flue gas

DME has very similar properties to LPG

• DME is promising as Energy carrier from remote resource for high energy intensity by volume and safety aspect.

	Liquid H ₂	Liquid Ammonia	Methanol	DME	CO ₂
Formula	H ₂	NH ₃	CH3OH	CH ₃ OCH ₃	CO ₂
Liquid density [kg/L]	0.07	0.7	0.795	0.67	1.1
Boiling point [°C] @0.1Mpa	-253	-33.4	64.4	-25	(-50)*1
Vapor pressure [Mpa] @25℃	_	1.02	0.0129	0.53	(0.7)*1
Energy density by Weight [MJ/kg]	120.8	19.2	21.1	28.8	_
Energy density by ∀olume [MJ/L]	8.5	13.4	16.8	19.3	_
Explosion limit [%]	4~75	15~28	6.7~36	3.4~27	_
Allowable limit of toxicity	-	25ppm	200ppm	-	_

*1: Marine transportation condition of liquid CO₂

LPG Synthesis?

Synthesis of C₂₊ hydrocarbons by CO₂ hydrogenation over the composite catalyst of Cu–Zn–Al oxide and HB zeolite using two-stage reactor system under low pressure

Masahiro Fuiiwara*. Hiroaki Sakurai. Kumi Shiokawa. Yasuo Iizuka

 $\begin{array}{c} \text{Methanol} & \text{Zeolite} \\ \text{synthesis catalyst} & \\ \text{CO}_2 + 3\text{H}_2 & \longrightarrow & \text{CH}_3\text{OH} (+\text{H}_2\text{O}) & \longrightarrow & \text{C}_{2+} \text{ Hydrocarbons} \end{array}$

Table 2

CO2 hydrogenation over Cu-Zn-Al (6:3:1) oxide +HB composite catalysts using two-stage reactor system.^a

Run	Temp. of first reactor (°C)	Pressure (MPa)	Flow rate (mL/min)	CO2 conv. (%)	Select	Selectivity (C-mol%)					C2+ yield (C-mol%)		
					со	C ₁	C ₂	C3	C4	C5+	MeOH	DME	
1	250	0.98	50	25.3	91.3	0.2	1.4	1.5	1.5	0.3	2.4	1.4	1.19
2 ^b	250	0.98	50	20.7	73.2	1.3	1.2	5.9	12.0	1.7	3.1	1.6	4.31
3	300	0.98	50	32.5	90.8	0.3	1.4	2.7	2.7	0.5	1.1	0.5	2.37
4	400	0.98	50	43.2	87.6	0.5	1.4	5.0	4.5	0.5	0.4	< 0.1	4.92
5	420	0.98	50	45.9	85.4	0.8	1.3	5.9	5.6	0.6	0.3	< 0.1	6.15
6 ^c	420	0.98	50	45.8	87.1	0.7	1.3	5.2	4.9	0.5	0.2	< 0.1	5.45
7 ^d	420	0.98	50	45.8	89.3	0.4	0.6	0.7	1.2	0.3	2.4	5.1	1.28
8°	420	0.98	50	45.2	95.2	0.4	0.7	1.6	1.8	0.2	0.1	<0.1	1.94
9 ^b	420	0.98	50	25.0	95.7	0.7	1.0	0.2	0.0	0.0	1.8	0.6	0.30
10	420	0.98	50	47.2	77.5	0.9	1.1	9.0	10.2	1.0	0.2	0.1	10.05
11	420	0.98	25	47.8	66.8	1.4	1.7	15.0	13.6	1.3	0.2	< 0.1	15.10
12 ^r	420	0.5	50	45.2	93.5	0.3	0.5	2.6	2.5	0.4	0.1	0.1	2.71
13	420	0.3	50	43.2	95.3	0.2	0.4	1.8	1.8	0.3	0.1	0.1	1.86

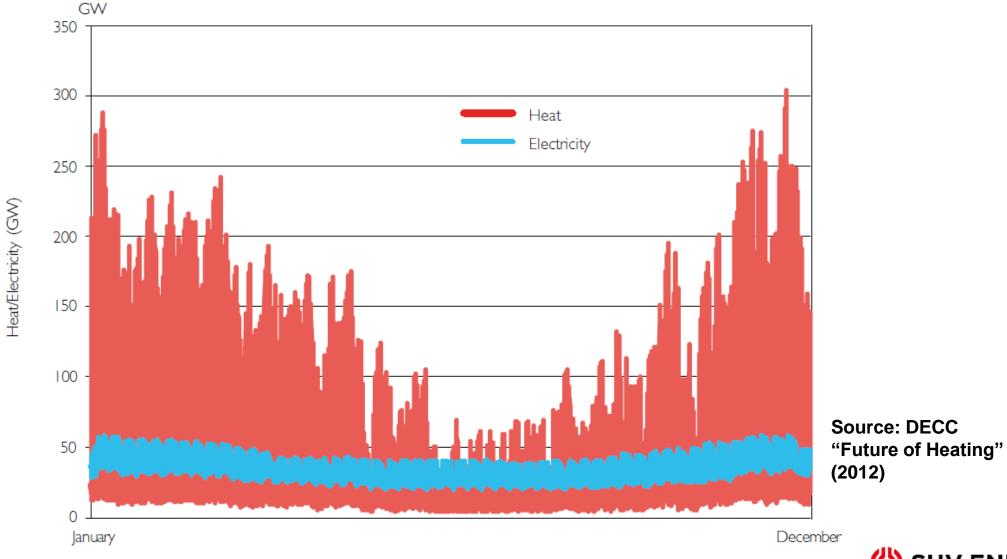
a Reaction conditions: catalyst in the first reactor 1 g of Cu-Zn-Al (6:3:1) oxide obtained by calcination at 500 °C for 4 h, catalyst in the second reactor 0.1 g of Cu-Zn-Al

(6:3:1) oxide obtained by calcination at 500 °C for 4 h and 0.9 g of HB zeolite (SiO₂/Al₂O₃ = 28.5), 300 °C, 0.98 MPa, H₂/CO₂ = 3, catalytic activity after a time-on-stream of 1 h.

^b Without the cold trap.

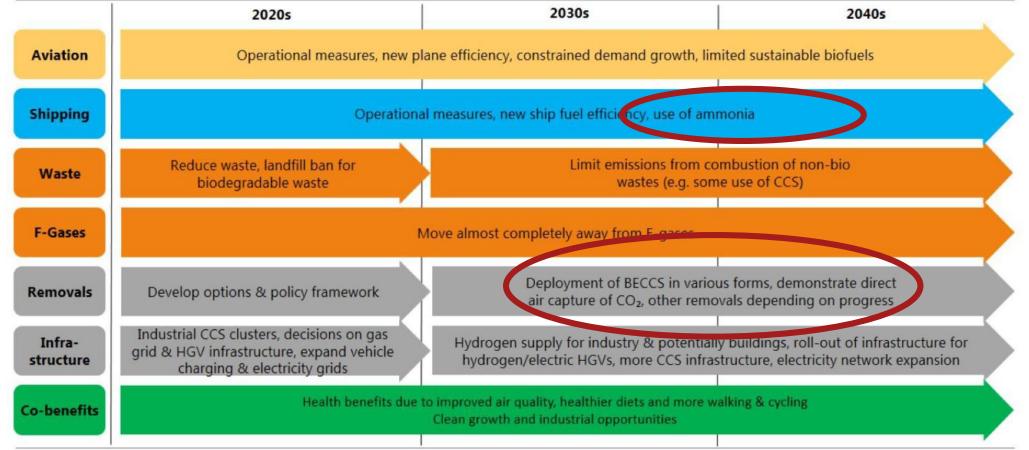
Can their costs come down?

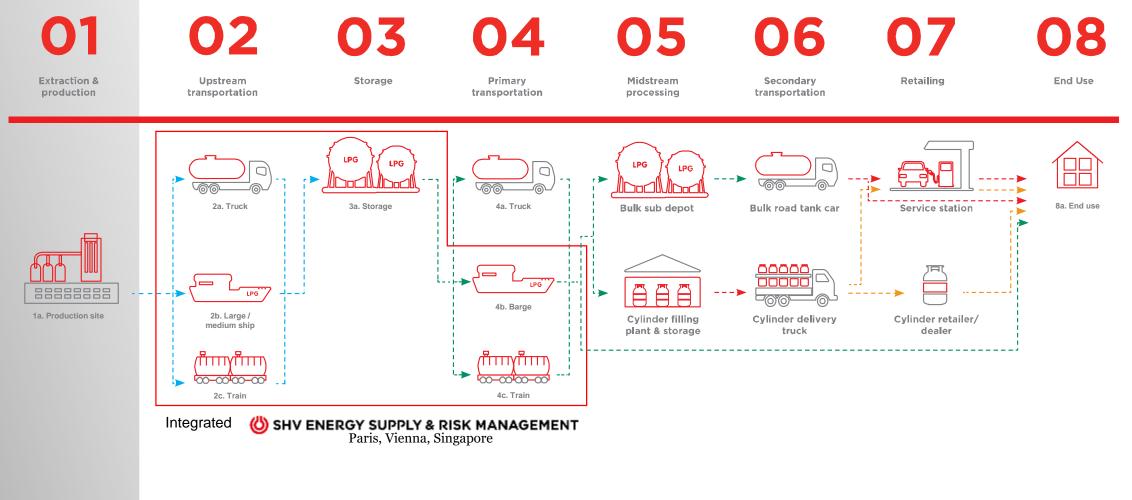
(U) SHV ENERGY


(Competitive) efficiencies

P2G Pathways	Technologies	Current	Long Term	
	Electrolyser, Low pressure hydrogen storage/compression, Injection to pipeline	59-83%	64-86%	
Power to Natural Gas End-users	to heat for residential	52-76%	56-79%	
	to micro-CHP	40-72%	55-74%	
	to large scale gas turbines	18-26%	23-31%	
Power to Renewable Content in Petroleum Fuel	Electrolyser, Low pressure hydrogen storage/compression	55-83%	59-86%	
Power to Power	Electrolyser, Low pressure hydrogen storage/compression, fuel cell	17-40%	27-43%	
Power to Seasonal Energy Storage to Electricity	Electrolyser, low-pressure compression, underground storage, Transmission pipelines, Natural gas-based power plants	16-24%	22–29%	
Power to Hydrogen for zero—emission transportation	Electrolyser, low-pressure compression and storage, high-pressure compression for refueling station.	50–79%	54-82%	
Power to Seasonal storage for Transportation	Electrolyser, low-pressure compression, underground storage, hydrogen separation technologies, high-pressure compression	36-68%	43-66%	
Power to Renewable Natural Gas (RNG) to Pipeline ("Methanation")	Electrolyser, Low-pressure energy storage and compression, Methanation reactor, Gas Clean-up, Injection of Renewable Natural Gas to the Natural Gas Pipeline	40-63%	4565%	
Power to Renewable Natural Gas (RNG) to Seasonal Storage	Gas Clean-up Underground storage Injection of RNG to the		43-58%	

Source: Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways. Energies. (2017)


Heat & electricity demand variability across the year


Reaching net-zero emissions in the UK How UK net-zero scenarios can be delivered

DAC: Having a strategy requires which relies on overcoming the Second Law of Thermodynamics is bad policy

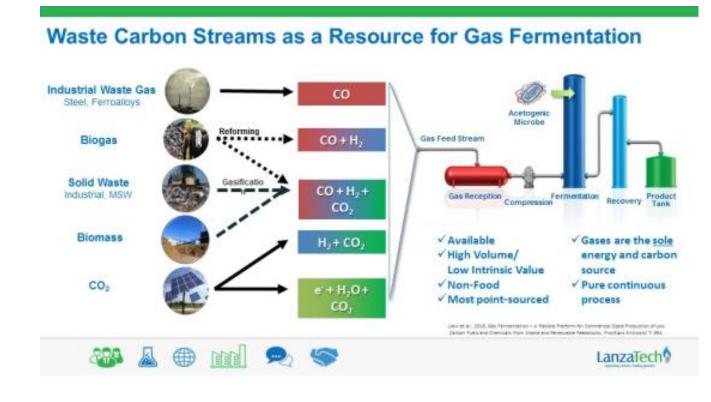
Exploitation of exisiting upstream and downstream infrastructure is a major cost saving

Other developments

Massive expansion of (seasonal) renewable electricity and load/frequency response via hydrogen generation will drive down upstream costs Expansion of CCS/CCU will again drive down costs

Require policy which encourages the fair exploitation of recycled carbon *and carbon monoxide*

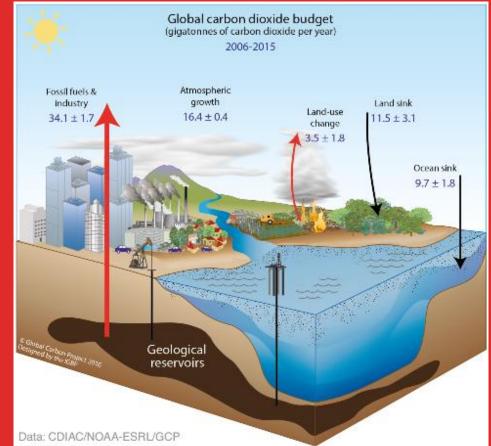
RFNBO definition too narrow


CO2 has no intrinsic energy content

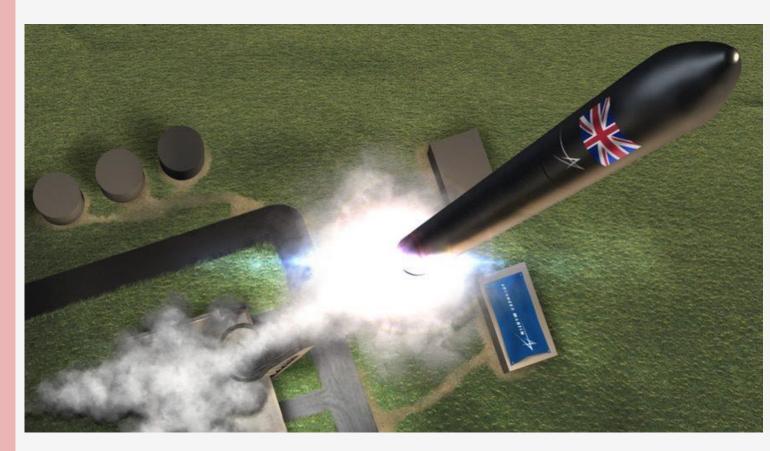
CO2 needs to be captured

Hydrogen/electrons used to make *carbon monoxide* – this is the actual fuel

Maximisation of carbon monoxide is key Further hydrogen then used to make fuels Enables access to large point sources of carbon (and hydrogen) together with electrolytic hydrogen



Are they any good?


Climate science tells us that bread today is just as valuable as jam tomorrow

Quick wins with *drop-in* replacements have long-term cumulative benefit (can we please forget about DAC?)

Biopropane to Infinity & Beyond!

Lockheed Martin and Orbex to launch UK into new space age

July 16th 2018 – Farnborough International Air Show

"Their orbital launch vehicle, called Prime, will deliver small satellites into Earth's orbit, using a single renewable fuel, **bio-propane**, that cuts carbon emissions by 90% compared to hydrocarbon fuels."

https://www.gov.uk/government/news/lockheed-martin-andorbex-to-launch-uk-into-new-space-age

Together in Electric Dreams Thank You! CALOR Keith.simons@shvenergy.com **BioLPG** TINE 74-3-3

320KN